Measurement and Sensor Systems

Set-point adjusters and Motor-driven potentiometers

Set-point adjusters

and Motor-driven potentiometers

For presetting of reference variables in analogue computing and regulating circuits, set-point adjusters are used as control desk instruments in flush mounting format or motor-driven potentiometers are used for switch cabinet mounting.

For providing the set-point output, they contain mainly **single** or multiple ganging potentiometers with resistance output and with current or voltage output respectively, associated with a built-in signal converter.

Inductive transducer systems with current output or **optoelectronic systems with digital output** are available as well.

All types of transducer systems can be equipped with floating reversing switches for end-point limitation.

The presetting of the set-point is carried out mostly by hand with a rotary type control knob on a dial of flush mounting instruments or carried out with motor-driven potentiometers, additionally by means of set pulses with a d.c. motor or an a.c. motor (synchronous motor). **Graduation of the scale, scale angle and colour of the scale are optional according to user requirements.**

Motor-driven potentiometers are mostly used as set-point adjusters in regulating circuits. Frequently they are used as signal converter as well, for instance as

- current/voltage-to-resistance converter
- measured value memory or measured value delay unit
- servo system in compensating circuits for analogue indicators

Especially for servo systems, the motor-driven potentiometer of series M7-G30-PK613 serves in transformers or indicating instruments.

In connection with an appropriate servo-amplifier, inexpensive high precision indirect-acting measuring instruments can be realized easily for indicating purposes, for instance in

 large-scale indicators for the display of braking force in motor vehicle operational monitoring systems Application range

Specifications

Potentiometers ¹⁾

Series	PW309*	PW613	PW620	PW70	PW100
Angle of rotation	340°	345°	345°	345°	345°
Resistance value	max.10 kΩ	max. 10 kΩ	max. 50 kΩ	max. 100 kΩ	max. 100 kΩ
Linearity	± 0.5%	± 0.3%	± 0.2%	± 0.2%	± 0.1%
Multiple design	two-fold	six-fold	six-fold	six-fold	six-fold

with signal converter

Series	PW613 Mu	PW620 Mu
Output	0 / 4 - 20 mA	0 / 4 - 20 mA or 0 - 10 V
Burden max	600 Ω	600 Ω / Load min. 2 k Ω
Supply	18 - 33 VDC	18 - 33 VDC

* only for set-point-adjusters size 48 x 48 mm

Driving motors

Synchronous motor type M4	
Motor voltage	24 V, 48 V, 110 V and 220 VAC
Frequency	50 or 60 cps
Rotational speed	at 50 cps 250 rpm, at 60 cps 300 rpm
Gear	designed for standard running periods 15, 30, 60, 120 sec.

DC motor, type M3 and M7 $^{\scriptscriptstyle 2)}$	
Motor voltage	6 VDC, 12 or 24 VDC via voltage divider
Current consumption	6 mA approx. 30 mA
Nominal speed	approx. 3600 rpm at 6 V
Gear	designed for standard running periods 15, 30, 60, 120 sec.

Gears and control time

The control time for a signal to rise from 0 to 100% defines the speed increasing ratio of the gear. At set-point adjusters, the standard running periods are 15, 30, 60 or 120 sec. Other running periods are possible.

At motor-driven potentiometers of gear series G30 the standard running time is approximately 1 sec. for applications in a follow-up system³⁾.

At motor-driven potentiometers of gear series – D – the regulating time can be chosen from approx. 10 sec. to max 24 h.

Switches

Set-point adjusters contain in most cases only two switches for endpoint limitation. Starting with size 96 x 96 mm, max. 6 cam-operated switches are possible. Motor-driven potentiometers can be equipped either with two permanently adjusted limit switches or with switches arbitrarily adjustable by cam discs – up to 6 switches at maximum.

	Switches		
I.	Switching voltage	250 VAC	30 VDC
	Switching current	6 A	3 A, inductive load
	Switching hysteresis	< 1°	
_			

1) All potentiometers can be equipped with any resistance value, angle of rotation, taps and short circuit sections.

²⁾ Also available with built-in controller boards for adapting the running period between 1 and 100 sec. by means of a trimming potentiometer.

³⁾ Also available with mounted servo-amplifier for follow-up systems.

Models

of set-point adjusters

Flush mounting formats according to DIN 43 700

Size of frame	48 x 48	72 x 72	96 x 96	144 x 144
Dimension A	□ 48	□ 72	□ 96	□ 144
Panel cut-out	□ 45.5	□ 68	□ 92	🗆 138
Dimension B	5	5	5	7
Dimension C*	50	50	70	55
Casing key	57	56	53	52

* Standard length

General data	
Casing	sheet steel
Bezel	plastic
Casing degree of protection	frontal IP 44, rear side IP 10
Electrical termination	terminal block
Temperature range	– 30 to +70°C
Testing voltage	550 V, 50 cps, 1 min.
EMC-Test according to	DIN EN 61 000-6-4
	DIN EN 61 000-6-2
Scale colour	white*
Graduation mark colour	black*

* Other colours on request

Design varieties of scales

Standard designs

Examples

 $\begin{array}{l} \mbox{Scale C} \\ \mbox{C} \ = \ \mbox{scale of standard design, no sight glass} \end{array}$

Designs for marine applications

Examples

for instance rudder angle selection – with rotary type control knob Other marine design varieties – course selector

for instance rudder angle selection – with hand wheel Other marine design varieties – engine room telegraph

Models

of motor-driven potentiometers

M 4 – D – PW 620 MU

M 4 – D – PW 70 M... / 6SEN

Accessories

Technical data	Servo amplifier
Model	printed circuit board
Туре	V-i20-1/01
Running period	-
Input	for instance 0 - 20 mA, Ri 50 Ω , for instance 0 - 10 V, Ri 10 k Ω /V
Output	appropriate for motor-driven potentiometer
Supply	20 - 30 VDC, 40 mA
Notice	input and supply have to be electrically isolated

Types – explanations

Casing key Scale type Potentiometer type Set-point adjuster (hand control) Set-point adjuster with DC-Motor Set-point adjuster with AC-Motor Potentiometer with current output Two permanently adjusted limit switches

Headquarter in Berlin

Berlin Fernsteuergeräte

Kurt Oelsch GmbH Jahnstraße 68 + 70 D-12347 Berlin Phone + 49 (0 30) 62 91 - 1 Fax +49 (0 30) 62 91 - 277

Factory in Kablow

Kablow

FSG Fernsteuergeräte Meß- und Regeltechnik GmbH OT Kablow Mühlenweg 2-3 D-15712 Königs Wusterhausen Phone +49 (0 33 75) 269 - 0 Fax +49 (0 33 75) 269 - 277

Factory in Heppenheim

Heppenheim

Fernsteuergeräte Kurt Oelsch GmbH & Co.KG Weiherhausstraße 10 D-64646 Heppenheim Phone +49 (0 62 52) 99 50 -0 +49 (0 62 52) 72 05 - 3 Fax

info@fernsteuergeraete.de www.fernsteuergeraete.de